StarGenetics – Implementation, evaluation, outreach, & development

Education Group Meeting

March 11, 2011

Lourdes Alemán, Ph.D. Stacie Bumgarner, Ph.D.

The Education Group of the MIT Department of Biology

& Star Software Tools for Academics & Researchers

Office of Educational Innovation and Technology

Upcoming events....

http://educationgroup.mit.edu

Seminars

HHMI Professor Rich Losick

Topic: Long-Term, Hands-on Research Experiences Engage Students from Diverse Backgrounds

Date & Time/Location: Friday, April 15th @ 2:00 pm/Whitehead Auditorium

Professor Mike Klymkowsky

Topic: Bioliteracy and the BCI (Biology Concept Inventory)

Date & Time/Location: Friday, April 22 @ 2:30 pm/Whitehead Auditorium

Dr. Laura Border

Topic: *The Graduate Teacher Program – Synergy between teaching & science* **Date & Time/Location**: Wednesday, May 25th @ 2:30 pm/66-110

Seminars

HHMI Professor Rich Losick

Topic: Long-Term, Hands-on Research Experiences Engage Students from Diverse Backgrounds

Date & Time/Location: Friday, April 15th @ 2:00 pm/Whitehead Auditorium

Professor Mike Klymkowsky

Topic: *Bioliteracy and the BCI (Biology Concept Inventory)*

Date & Time/Location: Friday, April 22 @ 2:30 pm/Whiteher

Dr. Laura Border

Sign up sheet: Lunch w/ speakers

Topic: The Graduate Teacher Program – Synerg,

Date & Time/Location: Wednesday, May 25th @ 2:30,

Education Group Meeting

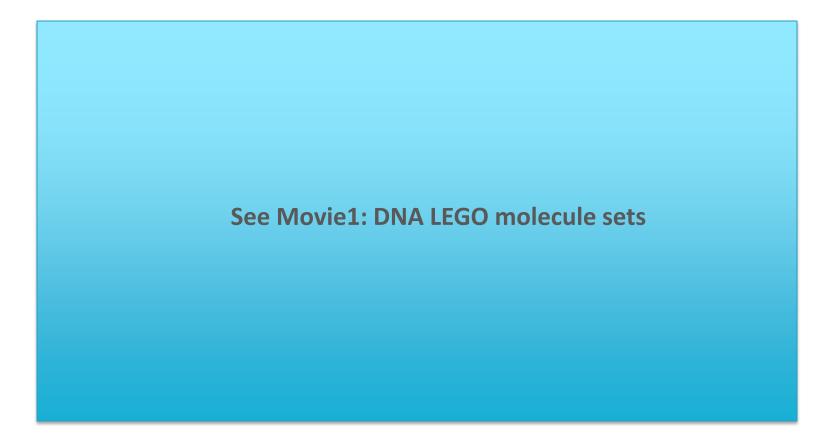
Dr. Ishara Mills-Henry

Topic: Science of the Eye Outreach Program (Jon King)

Date & Time/Location: Thursday, April 7th @ 3:00 pm/ 68-180

Education Group Meetings

Dr. Ishara Mills-Henry


Topic: Science of the Eye Outreach Program (Jon King)

Date & Time/Location: Thursday, April 7th @ 3:00 pm/ 68-180

Sign up sheet: Ed Group meetings participants

Help build DNA LEGO molecules sets for Boston Public Schools

Dr. Kathy Vandiver/Dr. Amanda Gruhl (CEHS/MIT Museum/Edgerton Center)

Help build DNA LEGO molecules sets for Boston Public Schools

Dr. Kathy Vandiver/Dr. Amanda Gruhl

Date & Time: Monday, March 21st @ 6 – 9 pm

Location: 56-202 (CEHS conference room)



Sign up sheet: Volunteers!

Biology tools

http://web.mit.edu/star/

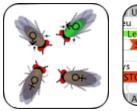
STAR biology tools

StarBiochem: protein 3D viewer

StarGenetics: virtual genetics laboratory

StarORF: gene finger (six frame translator)

Design process of STAR tools


StarBiochem

Professor: Graham Walker OEIT: Chuck Shubert

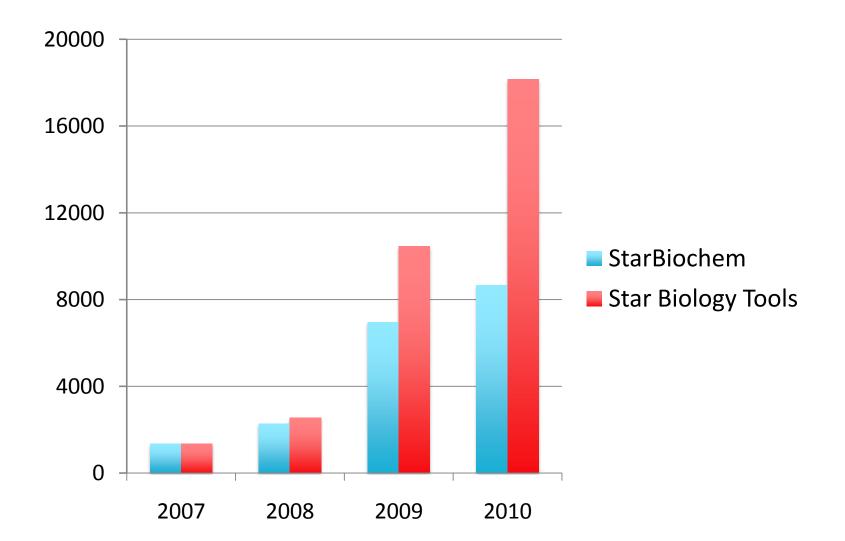
Introductory Biology Series (7.01X)

StarGenetics/StarORF

Professor: Chris Kaiser

OEIT: Ivan Ceraj

Introductory Biology Series (7.01X)


Genetics

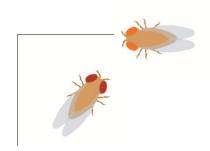
Summer Pre-graduate Bridge Program

What **we** did to make tools more accessible to others and increase usage

- Create curriculum modules
- Conduct teacher/faculty training workshops
- Design and implement outreach activities
- Collaborate with wide range of educational institutions
- Assess how software tools impact students' learning experience
- Presented at scientific meetings and educational technology conferences
 - Advertised through mail campaign and Google AdWords

STAR tools usage from 2007-2010

What IS StarGenetics?


StarGenetics: A virtual genetics laboratory

Developers:

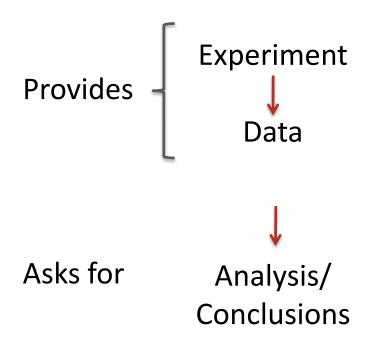
Faculty: Professor Chris Kaiser Biology Education Group: Lourdes Alemán, Stacie Bumgarner OEIT-STAR: Ivan Ceraj

Educational Goal:

To teach genetic concepts, experimental design & data interpretation

WHY was StarGenetics developed?

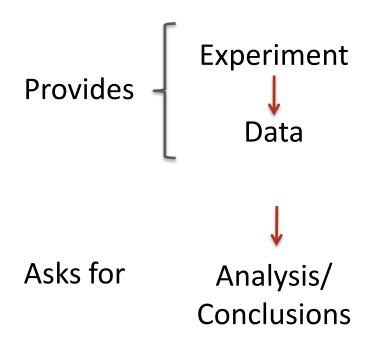
Limitations of traditional methods for teaching genetics concepts



Typical genetics problem:

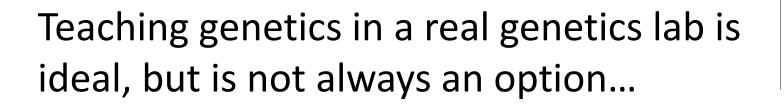
Limitations of traditional methods for teaching genetics concepts

Typical genetics problem:



What's missing?

Limitations of traditional methods for teaching genetics concepts


Typical genetics problem:

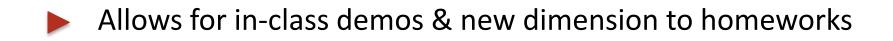
What's missing?

Doesn't teach students how to develop and test a hypothesis!

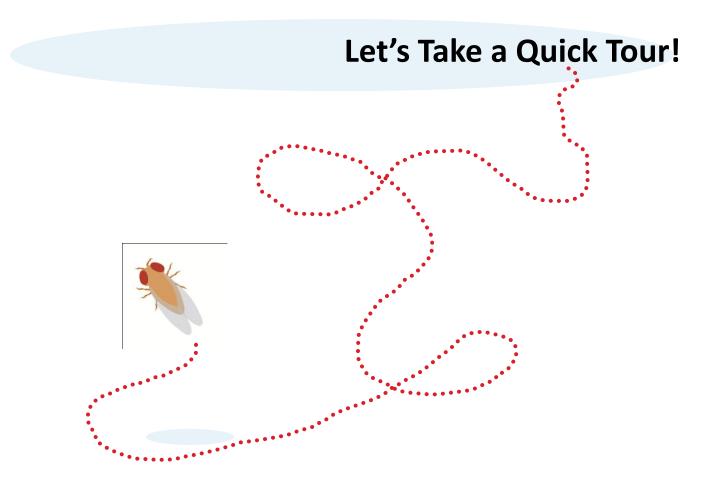
Cost

Establishing a genetics lab can be costly (\$10,000 - \$50,000).

Time


Genetics experiments can take longer than the time available to explore a concept.

Course design


Not all genetic courses offer a lab component.

Virtual genetic cross simulator \rightarrow StarGenetics

- Freely accessible: http://web.mit.edu/star/genetics/
- Platform independent (Windows, Mac, Unix/Linux)
- Simulates actual experimental process
- Address cost and time issues associated with traditional genetic labs

StarGenetics Fruit Fly Visualizer

See Movie2: StarGenetics Fly Tour

StarGenetics allows for easy customization of exercises

Source Files = Encryptable Excel Workbooks

0	00						<u> </u>	SG Fly WB V	er4.xls							
0) 🔯 🖪	a 8		5	<u>5</u> • @	• 2 •	A. 7	🕹 🛅	1	.00% -	2					
Nev	w Open Save	Print Imp	ort Copy Past	te Format	Undo Red	o AutoSum	Sort A-Z Sort	t Z-A Galler	y Toolbox	Zoom He	elp					
						Sheets	Charts	SmartA	rt Graphics	Word	Art					
\diamond	A	В	С	D	E	F	G	Н Н		J	K	L	M	N	0	
1	StarGer	netics E	xercise D	evelop	ment E	xcel Work	book (F	ly)								
2																
3	Introduc	tion														
4	1. StarGene	etics exerc	ises are devel	oped in Exc	el. You ca	n modify this E	xcel Workbo	ook to develo	op your own	StarGeneti	cs exercise					
5																
6	2. This Exce	l Workboo	k contains 5 a	dditional ta	bs:											
7																
8	-Mating Er	ngine: this	tab specifies t	he type of v	/isualizer u	sed within the	software an	nd its specific	characteris	tics.						
9	-															
10	-Genes &	Alleles: thi	s tab specifies	the alleles	and genes	s in question a	nd their loco	ation within t	he genome.							
11																
12	-Genes in	reraction:	this tab define	s the relatio	nship betv	ween genotyp	es and phe	notypes.								
13	Call this is	10.000			-	1										•
14 15	-Gel: This T	ab specifi	es the size of ti	ne DNA ma	rkers used	in the exercise	9.									
	Ormanian	a far mak	anu this to be do	fin on the one		erented by Ct										
16 17	-Organism	is for mati	ng: mis iab de	ines the or	ganisms pr	resented by St	arGenetics i	to the users.								
	The informe	tion prote	nted in each	tab is divide	d into lloci	tructions' and	loout' loste	untions' dasa	ribos bourto	specify line	ut ubiobi	is the informs	rtion			
18			book that the			iructions and	input. Insire	uctions desc	ndes now to	specity inp	bur, which	is the informa	alion			
19 20	winnin ine E	XCEI WORKI	book indi ine :	sonware on	lizes.											
	3 StarCone	tice can a		orly formatt	od ovorch	e that has bee	an davelone	d in Excel III	o this one (f	or ov: StarG	onotics will	Lopon this of	vact Excel file			
						s do not have									open in Sta	rGen
23	noncrei, c	ping	inem is recom	interface se	/ mar osers				1. 100 Curri	nen provide	s me enery	pica version		TOF INCITIC	openninara	
24	To convert	an Excel fi	le into an enci	rypted SG7	format cli	ck on 'Tools ->	SG7 encrypt	tor' and follo	w the instruc	rtions						
25				i)picu voz			SOL CHORP									
26																
27	For further	informa	tion on Star	Senetics a	o to: http	://web.mit.e	du/star/a	enetics/								
28						.,,										A
29														_		v
			ntroduction M	lating engine	Genes & A	lleles 🖉 Genes i	nteraction	Gel Orga	nisms for mati		1111	1 1 1 1	1 1 1 1 1) 4	▶ 111
		al View	Ready							Sum	1=0	Θ	SCRL	O NUM		11.

Modifiable characteristics in StarGenetics Fly

organism characteristics

progeny per cross, # of matings per organism, recombination rates for X & Y


genotypes & corresponding phenotypes fly: 6 visible phenotypes, 1 nonvisible phenotype

genes interactions epistatic relationships, linkage antenna length eye color body color wing vein wing size sterility lethality

organisms

define which organisms will be available in Strains window

Concepts that can be taught using StarGenetics

Unique visits: 12, 241 Countries: 110 Cities: 1, 391

Argentina

Southern Ocean North Pacific Ocean

South Pacific Ocean Laptev

Россия

Chad

South Atlantic DR Cong

Souther

Sudan

Mongo

East Siberian Sea

StarGenetics – Implementation, evaluation, outreach, & development

Education Group Meeting

March 11, 2011

Lourdes Alemán, Ph.D. Stacie Bumgarner, Ph.D.

The Education Group of the MIT Department of Biology

& Star Software Tools for Academics & Researchers

Office of Educational Innovation and Technology

Talk Overview:

Implementing StarGenetics at Suffolk University –

Trying out StarGenetics in a variety of educational activities

Pilot study to evaluate learning outcomes – So much to learn about how to study learning outcomes!

Outreach efforts

Spreading the word and supporting others

Further development

Additional software, more curriculum

Classical Genetics Lecture & Laboratory

Fall 2008 – Prior to StarGenetics Implementation

Fall 2009 – Full implementation of StarGenetics

Small class size (~20)

- Intro course conducted like a seminar
- Knew all of my students

Limited resources

- Had a laboratory component, but not well resourced
- Lots of contamination, fly death, student frustration

Heterogeneous student population

- Preparation, ability?, interest, departmental culture

Trying out StarGenetics in a variety of educational activities...

*

Homeworks

Lecture demos

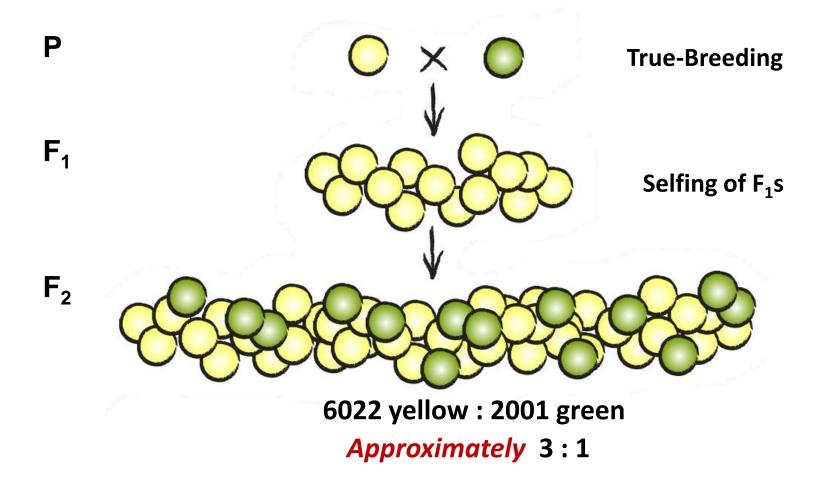
- Genetic linkage

Dry laboratory fly exercise

- 1 to 2 weeks to work on each; increased in complexity

- Effect of sample size and deviations due to chance

- To help prepare students for wet lab fly exercise


- Enrich their learning experience, given obstacles

- Added dimension: Experimental thinking

StarGenetics Lecture Demo: Why deviations due to chance?

How we typically introduce deviations due to chance...

StarGenetics Lecture Demo: Why deviations due to chance?

How we typically introduce deviations due to chance...

The SIZE of an experimental population (<u>the sample size</u>) is an important component of statistical significance.

The larger the sample size, the closer observed percentages can be expected to match values predicted by an experimental hypothesis, if that hypothesis is correct.

StarGenetics Lecture Demo: Why deviations due to chance?

Intuitive demonstrations with non-genetic examples...

Results expected......Heads 50%, Tails 50%

Suppose we flip this coin <u>10 times</u>:

And observe: 4 heads : 6 tails

Do the observed results Yes fit the hypothesis?

<u>1000 times</u>:

400 heads : 600 tails

No

Even though the ratio (2:3) is exactly the same!

StarGenetics Lecture Demo: Why deviations due to chance?

Examples can be **GENETIC**! And can then perform statistical analysis...

When observing *SMALL* numbers of progeny, we sometimes observe deviations from the expected ratio due to chance... Expect 3 WT : 1 ebony Observe 4 WT : 1 ebony

Phenotypes	1	1			
			TOTAL		
Count	10 (20%)	40 (80%)	50		
Female	8	20	28		
Male	2	20	22		

But as the sample siz	$e of F_2$		*	*		
LARGER, deviation	Phenotypes					
ratio is diminishe				TOTAL		
is correct	•	3 WT : 1 ebony e 3 WT : 1 ebony	Count	100 (25%)	300 (75%)	400
			Female	61	140	201
	CDSCIVE		Male	39	160	199

Trying out StarGenetics in a variety of educational activities...

*

×

Homeworks

Lecture demos

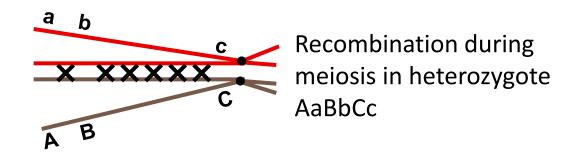
- Genetic linkage

Dry laboratory fly exercise

- 1 to 2 weeks to work on each; increased in complexity

- To help prepare students for wet lab fly exercise

- Enrich their learning experience, given obstacles


- Added dimension: Experimental thinking

- Effect of sample size and chi square tests

StarGenetics Lecture Demo: Why Linkage?

Lecture material on gene linkage usually goes something like this:

- The farther apart two genes are located from one another on the same chromosome, the more likely their alleles are to be separated from one another by recombination during meiosis.
- Genes located close together on the same chromosome assort together with a frequency that depends on the distance between them.

StarGenetics Lecture Demo: Why Linkage?

Often text-based examples are presented:

"You obtain the following testcross progeny..."

Brown body, Red eyes		35
Brown body, White eyes		14
Yellow body, Red eyes		17
Yellow body, White eyes		34
	Total:	100

StarGenetics Lecture Demo: Why Linkage?

Often text-based examples are presented:

"You obtain the following testcross progeny..."

Brown body, Red eyes	35	Parental types
Brown body, White eyes	14	
Yellow body, Red eyes	17	
Yellow body, White eyes	34	Parental types
Total:	100	

StarGenetics Lecture Demo: Why Linkage?

Often text-based examples are presented:

"You obtain the following testcross progeny..."

Brown body, Red eyes Brown body, White eyes Yellow body, Red eyes Yellow body, White eyes

35 Parental types

- $\begin{array}{c} 14 \\ 17 \end{array} \right\} \operatorname{Recombinant} types$
- 34 Parental types

Total: 100

StarGenetics Lecture Demo: Why Linkage?

Often text-based examples are presented:

"You obtain the following testcross progeny..."

Brown body, Red eyes35Parental typesBrown body, White eyes14Recombinant typesYellow body, Red eyes17Parental typesYellow body, White eyes34Parental types

Total: 100

- Recombination Frequency (RF) = $\frac{\# \text{ of Recombinants}}{\# \text{ of Total Progeny}} \times 100$
 - 1% RF = 1 unit of measure along a chromosome
 - = 1 centimorgan (cM)
 - = 1 map unit (m.u.)

StarGenetics Lecture Demo: Why Linkage?

Often text-based examples are presented:

"You obtain the following testcross progeny..."

Brown body, Red eyes35Brown body, White eyes14Yellow body, Red eyes17Yellow body, White eyes34

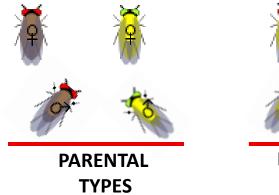
- **35** Parental types
 - Recombinant types
- 34 Parental types

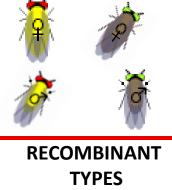
Total: 100

When genes are unlinked, Parentals = Recombinants

50% 50%

Linkage is defined as Parentals > Recombinants




StarGenetics Lecture Demo: Why Linkage?

We thought that this information might seem very abstract to many students....

... and we wondered if we could more richly support the concept of gene linkage using StarGenetics in a concept demo.

... A visual real-time demonstration of gene linkage!!

See Movie3: StarGenetics Linkage Demo

StarGenetics Lecture Demo: Linkage!

Custom Source file constructed using **Excel Template** on website...

http://web.mit.edu/star/genetics/problemsets/development/index.html

On the "Genes & Alleles" Tab in Excel Source File:

INPUT

Alleles	Gene	Chromosome	Gene Location	Notes
G, g	Green eyes	2	1	recessive
Y3, y3	Yellow body	2	5	recessive
Y2, y2	Yellow body	2	30	recessive
Y1, y1	Yellow body	2	50	recessive

Trying out StarGenetics in a variety of educational activities...

*

*

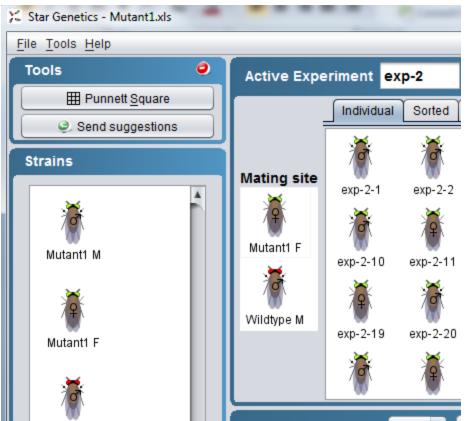
Lecture demos

- Effect of sample size and chi square tests
- Genetic linkage

Dry laboratory fly exercise

- To help prepare students for wet lab fly exercise
- Enrich their learning experience, given obstacles

Homeworks


- 1 to 2 weeks to work on each; increased in complexity
- Added dimension: Experimental thinking

StarGenetics Dry Laboratory: Fly lab simulation

In preparation for live fly cross experiment:

- familiarize with modes of inheritance in active learning exercise
- improve interpretation of data collected from actual fly crosses

Given 4 StarGenetics source files containing WT flies + mutant flies:

- 1. Autosomal recessive
- 2. Autosomal dominant
- 3. X-linked recessive
- 4. X-linked dominant

Trying out StarGenetics in a variety of educational activities...

*

Lecture demos

- Effect of sample size and chi square tests
- Genetic linkage

Dry laboratory fly exercise

- To help prepare students for wet lab fly exercise
- Enrich their learning experience, given obstacles

Homeworks

- 1 to 2 weeks to work on each; increased in complexity
- Added dimension: Experimental thinking

StarGenetics Homeworks:

Started with simple concepts

- Students need time to get familiar with the software
- Builds confidence

Increased complexity over time

- Followed increasing complexity of course curriculum
- Limit matings
- Limit provided flies (so students generate flies they need)

Versions of homeworks used now available on website http://web.mit.edu/star/genetics/problemsets/index.html

See Movie4: StarGenetics Homework Sample 1

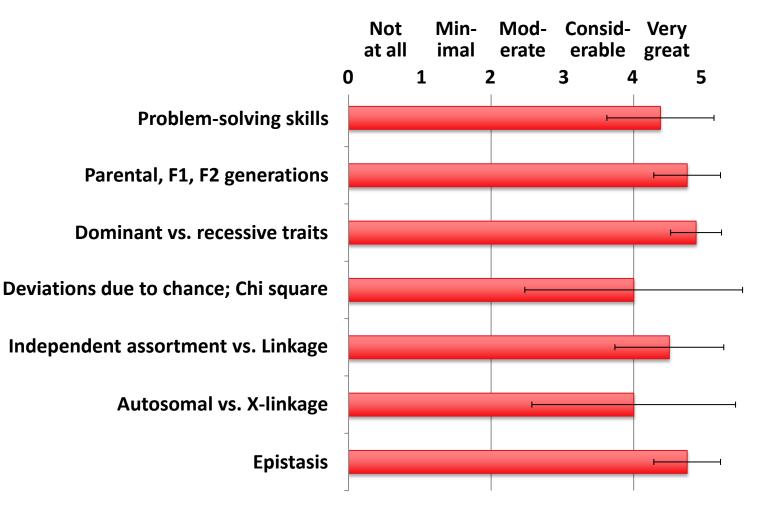
See Movie5: StarGenetics Homework Sample 2

Talk Overview:

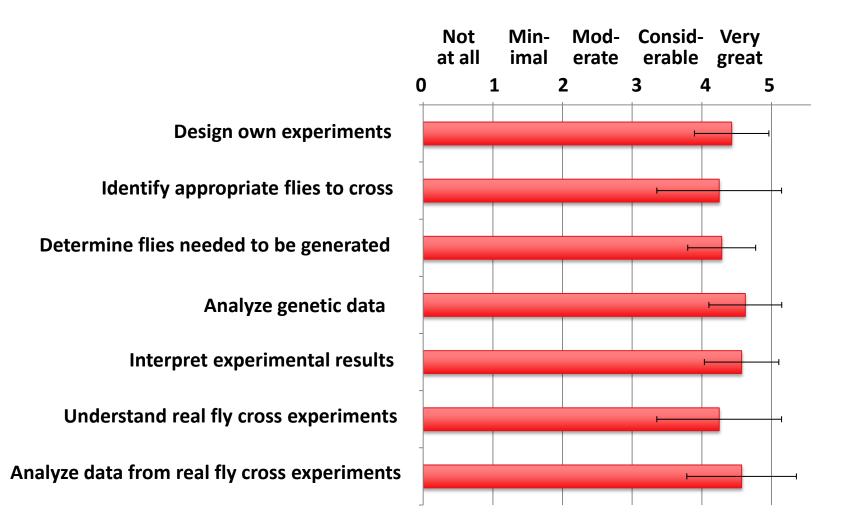
Implementing StarGenetics at Suffolk University –

Trying out StarGenetics in a variety of educational activities

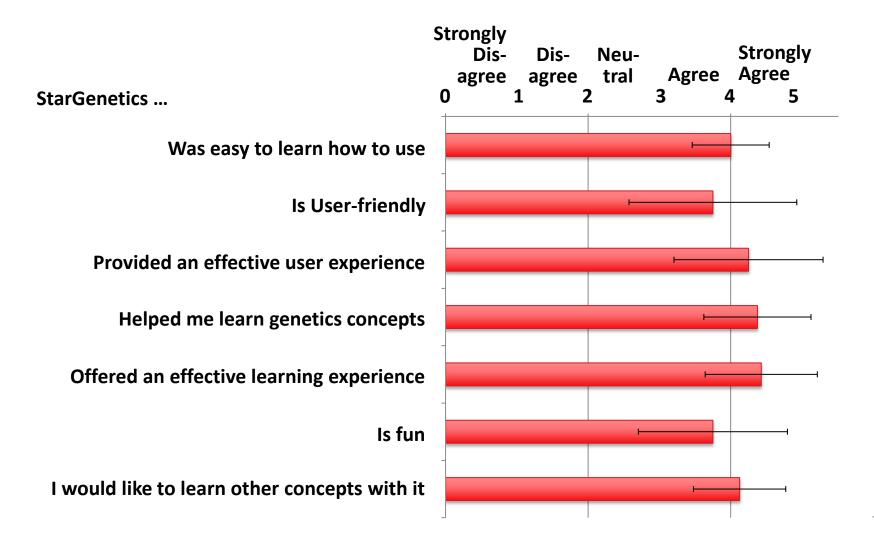
Pilot study to evaluate learning outcomes – So much to learn about how to study learning outcomes!



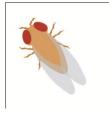
Spreading the word and supporting others


Further development

Additional software, more curriculum


How effective is StarGenetics in supporting student learning? Student Survey Results... Learning specific Skills & Concepts

How effective is StarGenetics in supporting student learning? Student Survey Results... Learning how to Design Experiments

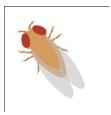


How effective is StarGenetics in supporting student learning? Student Survey Results... Providing a Positive Learning Experience

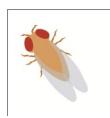
Pilot Study to Evaluate Learning Outcomes

Caveat of surveys...

Rely on Self-reporting by Students


Students often want to please you...

We wanted to go further with evaluation...


Challenges of evaluating educational outcomes...

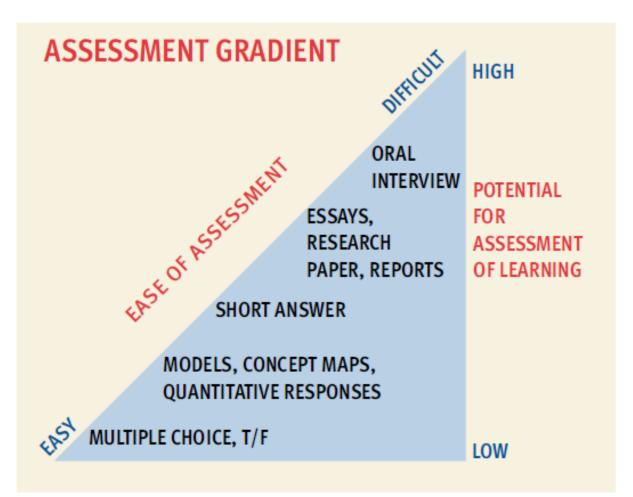
- Our first time doing THIS kind of research...
- Different methodologies and analyses
- Small sample size (n < 20)</p>
- Ethical considerations...
 - human subjects
 - students ≠ guinea pigs
 - cases versus controls

Helpful resources available!

Existing vetted assessment tools

- Go to <u>www.visionandchange.org</u> to download AAAS/NSF report:

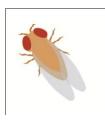
VISION AND CHANGE IN UNDERGRADUATE BIOLOGY EDUCATION: A CALL TO ACTION (see page 25)


- MIT Teaching & Learning Lab
 - Dr. Lisa Shuler, Dr. Rudy Mitchell, Dr. Lori Breslow (Director)

MIT COUHES & IRB

- Ethics Training, Informed consent, Approval, etc.

Pilot Study to Evaluate Learning Outcomes


Choosing tools to use in our evaluation...

From Janet Batzli, Biology Core Curriculum, University of Wisconsin-Madison & Tammy Long, Plant Biology, Michigan State University

Tools used for evaluation of StarGenetics in Pilot Study

Pre/Mid/Post Concept Quiz

- BCI Assessment test (M. Klymkowsky & K. Garvin-Doxas)

Open-Ended Exam Questions

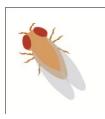
- Assess ability to design experiments appropriate to answer a given question

Rubric-based comparison of formal lab reports

- Before & after StarGenetics implementation
- Rubric available: http://web.mit.edu/tll/teaching-

materials/rubrics/LabReportRubric-Fall09.pdf

Tools used for evaluation of StarGenetics in Pilot Study


BCI Assessment test (M. Klymkowsky & K. Garvin-Doxas)

- > 18,000 student responses to 69 open-ended, short essay questions
- Responses analyzed with Ed's Tools system (<u>http://edstools.colorado.edu</u>) to identify response categories & student language
- Researchers used responses to generate "think-aloud" interview protocols
- ~20 students were interviewed "in depth"
- Lead to construction of multiple-choice questions with distractors
- Follow-up interviews conducted for validation
- Piloted in a number of University biology classes across country

Tools used for evaluation of StarGenetics in Pilot Study

Pre/Mid/Post Concept Quiz

- BCI Assessment test (M. Klymkowsky & K. Garvin-Doxas)

Open-Ended Exam Questions

- Assess ability to design experiments appropriate to answer a given question

Rubric-based comparison of formal lab reports

- Before & after StarGenetics implementation
- Rubric available: http://web.mit.edu/tll/teaching-

materials/rubrics/LabReportRubric-Fall09.pdf

How effective is StarGenetics in supporting student learning?

A work in progress... (analogous to a lab meeting!)

Now in process of analyzing collected data

Plan to share results here and in publication

Much learned from experience with pilot study

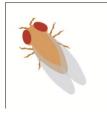
- Better prepared for larger study
 - MIT faculty open to evaluations in their courses

Talk Overview:

Implementing StarGenetics at Suffolk University –

Trying out StarGenetics in a variety of educational activities

Pilot study to evaluate learning outcomes – So much to learn about how to study learning outcomes!


Spreading the word and supporting others

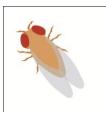
Further development

Additional software, more curriculum

Outreach: A critical component of Education Innovation

Outreach Efforts

Without active outreach, many education initiatives die at the site of local innovation.


Fairweather, J. (2008). Linking Evidence and Promising Practices in Science, Technology, Engineering, and Mathematics (STEM) Education: A Status Report.

Commissioned paper presented at NRC workshop on Evidence on Selected Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics (STEM) Education

(Washington, D.C., The National Academies National Research Council Board of Science Education).

Example Users:

Undergraduate college students

Introductory Biology (MIT, Tufts, Howard University) Introductory Genetics (MIT, Suffolk University) University Outreach Programs (MIT Quantitative Biology WS, MIT Summer Bridge Program)

High school students

Medford HS & Monument HS (Boston Public Schools) Teacher training programs (Boston Public Schools) High School Outreach Programs (Broad Institute) High School Fieldtrips (MIT Biology Department)

Workshops & Demos for faculty, instructors, & TAs:

E.g., Howard University, University of Colorado,

Roxbury Community College, Florida International University, MIT QBW2011, Brazilian Santander Universities and CERTI, MIT-Haiti Initiative, JFY Networks, Whitehead Teacher Partners

Support for remote users: star@mit.edu

E.g., University of Chicago, Colchester High School (VT), New College of Florida, Pacific Lutheran University (WA)

Focus groups:

E.g., High School Teachers (Whitehead Teacher Partners)

Talk Overview:

Implementing StarGenetics at Suffolk University –

Trying out StarGenetics in a variety of educational activities

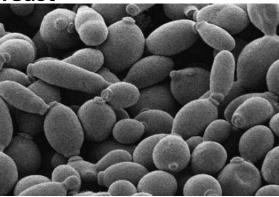
Pilot study to evaluate learning outcomes – So much to learn about how to study learning outcomes!

Spreading the word and supporting others

Further development

Additional software, more curriculum

Further development


StarGenetics visualizers

Currently Available:

Flies

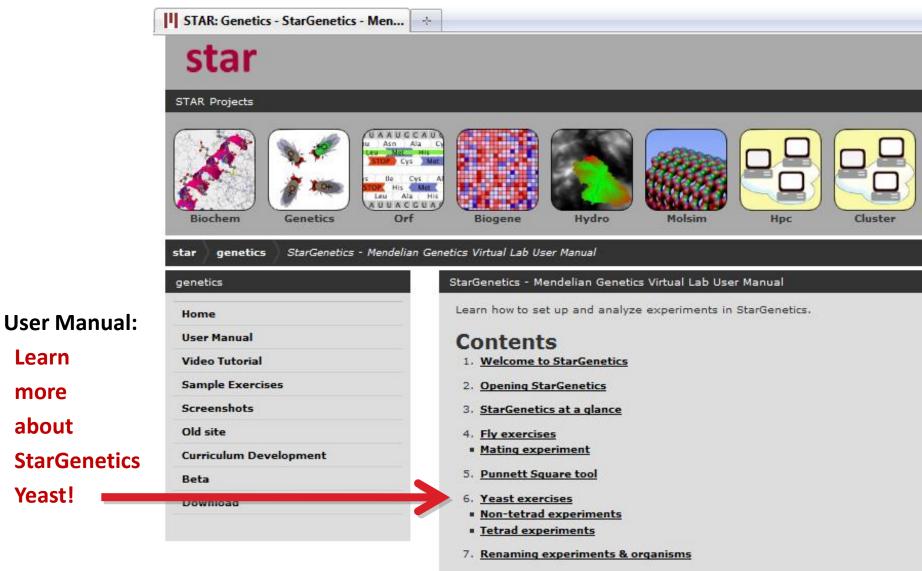
Yeast

plus: Smileys & Lego fish

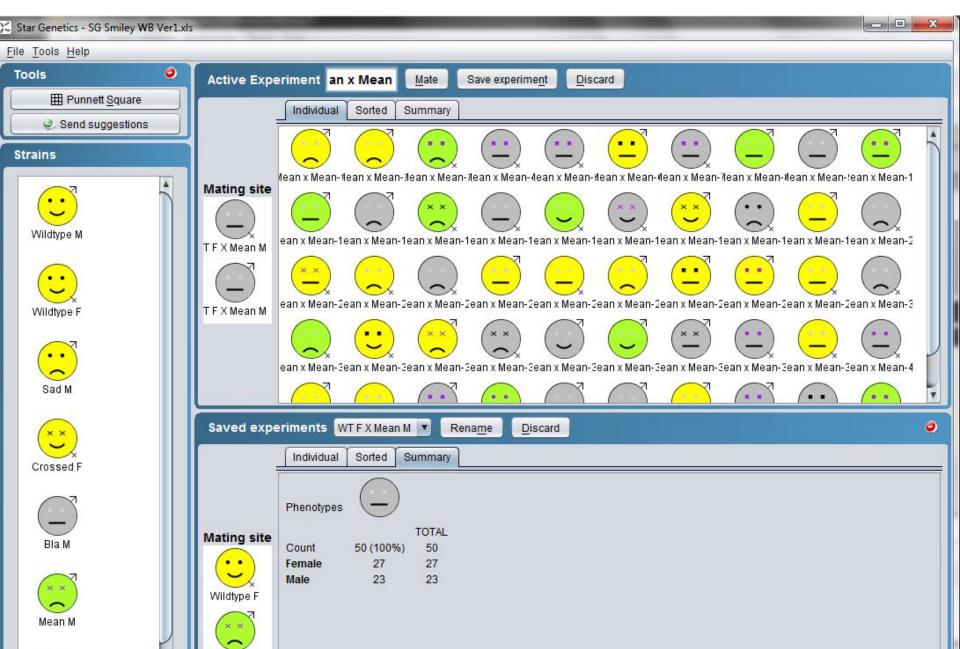
In progress:

StarGenetics genetic cross simulator: Yeast

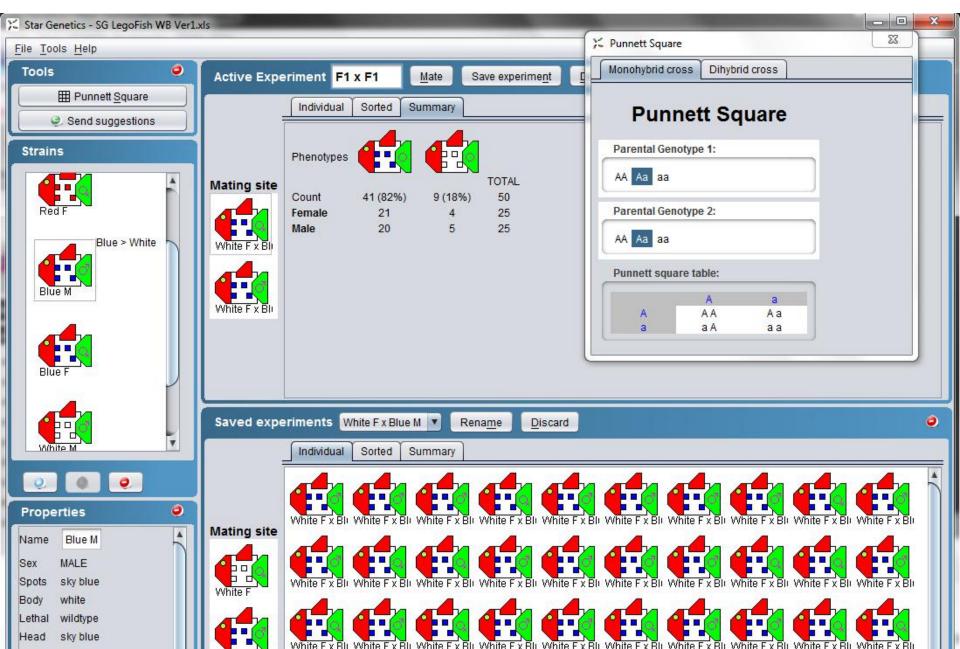
See Movie6: StarGenetics Yeast Tour


Learn

more


about

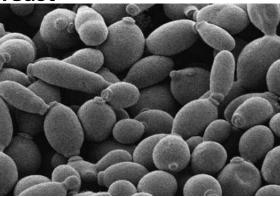
Yeast!


http://web.mit.edu/star/genetics/documentation/index.html

StarGenetics genetic cross simulator: Smileys

StarGenetics genetic cross simulator: Lego Fish

Further development


StarGenetics visualizers

Currently Available:

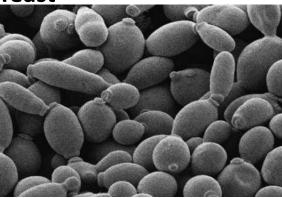
Flies

Yeast

plus: Smileys & Lego fish

In progress:

Further development


StarGenetics visualizers

Currently Available:

Flies

Yeast

plus: Smileys & Lego fish

In progress:

Bacteria (2011-2012)

Star Team Chuck Shubert Lourdes Aleman Sara Bonner Stacie Bumgarner Rocklyn Clarke Ivan Ceraj Justin Riley

Biology Department

Graham Walker Chris Kaiser Diviya Sinha Judy Carlin

OEIT

Vijay Kumar Molly Ruggles Toru liyoshi Violeta Ivanova Jim Cain Judy Leornard Mary Curtin

Collaborators

Melissa Kosinski-Collins Megan Rokop Kathy Vandiver

Outside Funding

HHMI Davis Educational Foundation

educationgroup@mit.edu

http://educationgroup.mit.edu/

star@mit.edu http://web.mit.edu/star

TLL

Lori Breslow Lisa Shuler Rudy Mitchell

IS&T

Katherine Wahl

Collaborating Institutions

Brandeis University Broad Institute Howard University MIT Museum Suffolk University Tufts University

Acknowledgements

